skip to main content


Search for: All records

Creators/Authors contains: "Belitz, Michael W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Data availability limits phenological research at broad temporal and spatial extents. Butterflies are among the few taxa with broad-scale occurrence data, from both incidental reports and formal surveys. Incidental reports have biases that are challenging to address, but structured surveys are often limited seasonally and may not span full flight phenologies. Thus, how these data source compare in phenological analyses is unclear. We modeled butterfly phenology in relation to traits and climate using parallel analyses of incidental and survey data, to explore their shared utility and potential for analytical integration. One workflow aggregated “Pollard” surveys, where sites are visited multiple times per year; the other aggregated incidental data from online portals: iNaturalist and eButterfly. For 40 species, we estimated early (10%) and mid (50%) flight period metrics, and compared the spatiotemporal patterns and drivers of phenology across species and between datasets. For both datasets, inter-annual variability was best explained by temperature, and seasonal emergence was earlier for resident species overwintering at more advanced stages. Other traits related to habitat, feeding, dispersal, and voltinism had mixed or no impacts. Our results suggest that data integration can improve phenological research, and leveraging traits may predict phenology in poorly studied species.

     
    more » « less
  2. More than 1.2 million distribution records were used to create species distribution models for 402 Palaearctic species of dragonflies and damselflies. On the basis of these diversity maps of total, lentic and lotic diversity for the whole of the Palaearctic (excluding China and the Himalayan region) are presented. These maps show a clear pattern of decreasing diversity longitudinally, with species numbers dropping in the eastern half of Europe and remaining low throughout a large part of Russia, then increasing again towards Russia’s Far East and Korea. There are clear differences in diversity patterns of lentic and lotic species, with lentic species being dominant in colder and more arid areas. Areas with a high diversity of species assessed as threatened on the IUCN red list are largely restricted to the Mediterranean, Southwest Asia, and Japan, with clear hotspots found in the Levant and the southern half of Japan. The diversity at species, generic, and family level is higher in the south of Japan than in areas at a similar latitude in the western Mediterranean. This is likely to be the result of the more humid climate of Japan resulting in a higher diversity of freshwater habitats and the stronger impact of the glacial periods in the Western Palaearctic in combination with the Sahara, preventing tropical African lineages dispersing northwards. 
    more » « less
  3. Rarely have studies assessed Odonata diversity for the entire Nearctic realm by including Canada, the United States, and Mexico. For the first time, we explored Odonata diversity in this region according to a definition of natural community assemblages and generated species distribution models (SDMs). Species occurrence data were assembled by reviewing databases of specimens held by significant Odonata repositories and through an extensive search of literature references. Species were categorized as forest-dependent or non-forest-dependent, as lentic or lotic-dependent, and according to conservation status. Predicted distributions were stacked for all species across their entire ranges, including areas outside of the Nearctic. Species richness and corrected weighted endemism (CWE) were then calculated for each grid cell. We found a pattern of greater species richness in the eastern portion of the Nearctic, which can be explained by the higher aquatic habitat diversity at micro and macroscales east of the Rocky Mountains, promoting niche partitioning and specialization. In the Nearctic region, the southeastern US has the highest number of endemic species of dragonflies and damselflies; this degree of endemism is likely due to glacial refuges providing a foundation for the evolution of a rich and unique biota. 
    more » « less
  4. Abstract The availability of citizen science data has resulted in growing applications in biodiversity science. One widely used platform, iNaturalist, provides millions of digitally vouchered observations submitted by a global user base. These observation records include a date and a location but otherwise do not contain any information about the sampling process. As a result, sampling biases must be inferred from the data themselves. In the present article, we examine spatial and temporal biases in iNaturalist observations from the platform's launch in 2008 through the end of 2019. We also characterize user behavior on the platform in terms of individual activity level and taxonomic specialization. We found that, at the level of taxonomic class, the users typically specialized on a particular group, especially plants or insects, and rarely made observations of the same species twice. Biodiversity scientists should consider whether user behavior results in systematic biases in their analyses before using iNaturalist data. 
    more » « less
  5. null (Ed.)
    Benchmark studies of insect populations are increasingly relevant and needed amid accelerating concern about insect trends in the Anthropocene. The growing recognition that insect populations may be in decline has given rise to a renewed call for insect population monitoring by scientists, and a desire from the broader public to participate in insect surveys. However, due to the immense diversity of insects and a vast assortment of data collection methods, there is a general lack of standardization in insect monitoring methods, such that a sudden and unplanned expansion of data collection may fail to meet its ecological potential or conservation needs without a coordinated focus on standards and best practices. To begin to address this problem, we provide simple guidelines for maximizing return on proven inventory methods that will provide insect benchmarking data suitable for a variety of ecological responses, including occurrence and distribution, phenology, abundance and biomass, and diversity and species composition. To track these responses, we present seven primary insect sampling methods—malaise trapping, light trapping, pan trapping, pitfall trappings, beating sheets, acoustic monitoring, and active visual surveys—and recommend standards while highlighting examples of model programs. For each method, we discuss key topics such as recommended spatial and temporal scales of sampling, important metadata to track, and degree of replication needed to produce rigorous estimates of ecological responses. We additionally suggest protocols for scalable insect monitoring, from backyards to national parks. Overall, we aim to compile a resource that can be used by diverse individuals and organizations seeking to initiate or improve insect monitoring programs in this era of rapid change. 
    more » « less